بانک سوال دبستان گرمه

بانک سوال دبستان گرمه

بانک نمونه سوال ابتدایی متوسطه اول و دوم پایان نامه مقاله تحقیق کارآموزی کارورزی طرح توجیهی کار آفرینی پروژه
بانک سوال دبستان گرمه

بانک سوال دبستان گرمه

بانک نمونه سوال ابتدایی متوسطه اول و دوم پایان نامه مقاله تحقیق کارآموزی کارورزی طرح توجیهی کار آفرینی پروژه

دانلود پایان نامه کارشناسی حل معادلات عددی دیفرانسیل ۱۸۰ ص

مقدمه

معرفی معادلات دیفرانسیل

معادله در ریاضیات وقتی با اسم خاص و صورت خاص می آید خود به تنهایی مسأله ای را نمایش می دهد که در آن می خواهیم مجهولی را بدست آوریم.

    کاربرد معادله دیفرانسیل از نظر تاریخی با معرفی مفهوم های مشتق و انتگرال آغاز گردید. ساده ترین نوع معادله دیفرانسیل آن دسته از معادلاتی هستند که مشتق تابع جواب را داشته باشیم. که چنین محاسبه ای به پاد مشق گیری و انتگرال گیری نامعین موسوم است.

 

 

    معادلات دیفرانسیل وابستگی بین توابع و مشتق های توابع را نشان می دهد. که از لحاظ تاریخی به طور طبیعی از زمان کشف مشتق به وسیله نیوتن ولایب نیتس آغاز می شود. (قرن هفدهم میلادی). که با رشد سریع علم و صنعت در قرن بیستم روشهای عددی حل معادلات دیفرانسیل مورد توجه قرار گرفتند که توسعه و پیشرفت کامپیوتر ها در پایان قرن بیستم موجب کاربرد روش های تقریبی تعیین جواب معادلات دیفرانسیل در بسیاری از زمینه های کاربردی گردید که باعث بوجود آمدن مباحث جدید در این زمینه شد.

نمادها و مفاهیم اساسی

اگر    تابعی از متغیر حقیقی باشد و                       ضابطه آن و     متغیر تابع یا مقدار تابع باشد، آنگاه مشتق    با یکی از نمادهای                                              نمایش داده می شود. همچنین مشتق دوم، سوم،... و    ام آن نیز به ترتیب با نمادهای 

نمایش داده می شوند. اگر   تابعی از دو متغیر حقیقی       باشد آنگاه مشتق های جزئی   با نمادهای                                                       نمایش داده می شوند. همچنین اگر                           آنگاه مشتق های جزئی   با نمادهای                               و یا                                            

               نمایش داده می شوند.

همچنین داریم:

که این توابع مشتقات جزئی مرتبه دوم و مراتب بالاتر است.

همچنین برای توابع   متغیر حقیقی داریم:

که فرض می کنیم همه مشتقات جزئی تا مرتبه مورد نظر پیوسته باشند.

حال برای تابع از متغیر حقیقی با مقدار حقیقی                                           را دیفرانسیل تابع   گویند. اگر تابع از    متغیر حقیقی  باشد.


را دیفرانسیل کامل تابع    گویند. که در حالت خاص اگر   از دو متغیر حقیقی با مقدار حقیقی باشد داریم:


معادلات دیفرانسیل معمولی و با مشتقات جزئی

یک معادله دیفرانسیل هر کدام از توابع ضمنی از متغیر یا متغیرهای مستقل، متغیر یا متغیرهای تابع و مشتق های متغیر یا متغیر های تابع نسبت به متغیر یا متغیرهای مستقل می تواند    باشد که حتماً باید لا اقل یک مشتق ساده یا جزئی در آن حضور داشته باشد.

معادله دیفرانسیل                                                           یک نوع از معادلات دیفرانسیل است که فقط یک متغیر مستقل     در آن وجود دارد. و         متغیر تابع و      

       مشتقات مرتبه اول تا    ام نسبت به   است. متغیر        می توانند در معادلات دیفرانسیل نباشند ولی حضور لااقل یک مشتق الزامی است. معادله دیفرانسیل          

                                                                             یک نوع معادله است که شامل         متغیر مستقل                              است و فقط یک متغیر تابع         دارد که در آن       تابعی از      ها است.

برای دسته بندی معادلات دیفرانسیل می گوییم  هرگاه همه مشتق های ظاهر شده در معادله مشتق ساده باشند آنگاه معادله را معادله دیفرانسیل معمولی (یا ساده یا عادی) می نامیم. اما اگر در عبارت معادله لااقل یک مشتق جزئی ظاهر شود آن را یک معادله دیفرانسیل با مشتقات جزئی یا معادله دیفرانسیل نسبی می نامیم.

معادلات دیفرانسیل زیر از جمله معادلات دیفرانسیل مهم هستند:

(معادله خطی غیر همگن)؛

(معادله بزنولی)

(معادله ریکاتی)

(معادله لا پلاس)

(معادله کلرو)       غیر خطی؛

(معادله لاگرانژ)          غیر خطی؛

(معادله یک بعدی حرارتی)          ثابت؛

(معادله اولر)            ثابت؛

(معادله لژ اندر)       ثابت؛

 (معادله بسل)            ثابت نا منفی؛

(معادله پواسن)         

(معادله یک بعدی موج)       ثابت؛

(معادله ترافیک)      

(معادله لاگرانژ)

(معادله پفافی)

(معادله ارتعاش تیر)        ثابت

از معادلات دیفرانسیل فوق معادلات (3)(4)(5)(7)(8)(10)(11)(12) معادلات دیفرانسیل معمولی و بقیه معادلات دیفرانسیل نسبی می باشند.

اگر بخواهیم یک معادله را به صورت دیفرانسیلی بنویسیم می توانیم به جای     عبارت       را جایگزین کنیم. مثلاً برای معادله                           به صورت    

است.

یک روش دیگر برای دسته بندی معادلات دیفرانسیل استفاده از مرتبة  آنها است که مرتبة یک معادله دیفرانسیل عبارت است از بزرگترین مرتبه مشتق یا مشتقات ظاهر شده در عبارت معادله دیفرانسیل. با توجه به معادلات فوق می بینیم که معادلات (3) و(4)و(5)و(7)و(8)و(15)و(16)و(17) معادلات مرتبه اول و معادلات (6)و(9)و(10)و(11) و(12)و(13)و(14) معادلات مرتبه دوم و معادله دیفرانسیل (18) یک معادله مرتبه چهارم است.

وقتی معادلات دیفرانسیل هر کدام دارای بیش از یک متغیر تابع باشند در این صورت معادلات به تنهایی ظاهر نمی شوند و مجموعه ای از آنها مورد استفاده قرار می گیرد که اغلب تعدادشان با تعداد متغیرهای تابع برابر است. این گونه معادلات را دستگاه معادلات دیفرانسیل می نامیم.

یک روش دیگر برای دسته بندی معادلات دیفرانسیل استفاده از مفهوم خطی بودن یا غیر خطی بودن معادلات دیفرانسیل است.

یک معادله دیفرانسیل معمولی یا با مشتقات جزئی داده شده را یک معادله دیفرانسیل خطی در مجموعه متغیرهای تابعی اش گوئیم هر گاه:

1) متغیر یا متغیرهای تابع از توان یک باشند.

2) متغیر تابع یا متغیرهای تابع و مشتقات، ضریب متغیرهای تابعی و مشتقات آنها نباشند.

3) خود متغیر تابعی غیر خطی نباشد.

در غیر این صورت اگر هر کدام از شرطهای بالا نقص شود معادله دیفرانسیل  غیر خطی است از معادلات مهم که ارائه کردیم معادلات (3)و(6)و(9)و(10) و(11) و(12) و(13) و (14) و (18) خطی هستند و معادله (4) (به دلیل حضور   ) و (5) (به دلیل حضور    )، (7) (به دلیل غیر خطی بودن   ) و (8) (برای لا اقل غیر خطی بودن          ) 

غیر خطی هستند. معادلات (16) و (17) می توانند خطی یا غیر خطی باشند.

همچنین می توان خطی بودن را نسبت به یک عامل از معادله دیفرانسیل، مانند متغیر تابع یا متغیرهای تابع، یا مشتق از مرتبه مشخصی تعیین نمود. این گونه معادلات نیمه خطی یا شبه خطی نامیده می شوند. مثلاً معادله                                     

که یک معادله غیر خطی نسبت به متغیر تابع       به دلیل حضور                            و همچنین به علت حضور      است را می توان یک معادله خطی نسبت به مشتقات جزئی نامید.  یک معادله دیفرانسیل مرتبه اول خطی معمولی به صورت کلی


و معادله مرتبه دوم خطی معمولی نیز به صورت کلی


نمایش داده می شوند. صورت کلی معادلات دیفرانسیل  با مشتقات جزئی مرتبه     ام خطی طولانی و پیچیده است. که در اینجا معادلات مرتبه اول و دوم خطی از آنها را نمایش می دهیم. ولی می توان با کمک از معادلات دیفرانسیل مراتب اول و دوم معادلات مراتب بالاتر را نیز نوشت.

معادله زیر یک صورت عمومی از معادلات با مشتقات جزئی مرتبه اول خطی از   متغیر مستقل با یک متغیر تابع است.

متن کامل را پس از پرداخت وجه می توانید دانلود نمایید

نوع فایل : word  فایل زیپ شده

تعداد صفحات 180

حجم :  102   kb

مبلغ قابل پرداخت 85000  ریال

پس از واریز وجه به صورت خودکار به صفحه پرداخت هدایت می شوید در صورت هرگونه مشکل با پشتیبانی 09357668326 تماس بگیرید.

نام و نام خانوادگی :

ایمیل :

موبایل :

نظرات 0 + ارسال نظر
برای نمایش آواتار خود در این وبلاگ در سایت Gravatar.com ثبت نام کنید. (راهنما)
ایمیل شما بعد از ثبت نمایش داده نخواهد شد